什么是非关系型数据库?

1、基本概念

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的社交性网络服务的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,如:

1、Highperformance——对数据库高并发读写的需求

Web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求,例如像JavaEye网站的实时统计在线用户状态,记录热门帖子的点击次数,投票计数等,因此这是一个相当普遍的需求。

2、HugeStorage——对海量数据的高效率存储和访问的需求

类似Facebook,twitter,Friendfeed这样的社交性网站,每天用户产生海量的用户动态,以Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,例如腾讯,盛大,动辄数以亿计的帐号,关系数据库也很难应付。

3、HighScalability&&HighAvailability——对数据库的高可扩展性和高可用性的需求

在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像webserver和appserver那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,数据库不能通过不断的添加服务器节点来实现扩展。
为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,NoSQL这种非关系型的数据应运而生。

2、NoSQL数据库分类

1、键值(Key-Value)存储数据库

这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。

2、列存储数据库

这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。列存储数据库存储每一列,允许更快的扫描时,只涉及一小部分列。
一个数据库索引是一种数据结构,允许在存储空间上快速查找数据和额外的写(索引更新)。索引映射到数据的行数,而一个列数据库将数据映射到行数,这样计算变得更快。

3、文档型数据库

文档型数据库的灵感是来自于LotusNotes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。
文档型存储以报纸为例,报纸上一篇文章也可以存储为一个单一的实体,这降低了对于习惯看到文章内容所消耗的时间。

4、图形(Graph)数据库

图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。图或网络数据主要有2个组成部分:
节点:实体本身。在社交网络中,这可能是人。
边:实体间的关系。这种关系用一条线来表示,并且有它自己的特性。边可以有一个方向。
图可以变的非常复杂来给定足够的关系和实体类型。
因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:
1、数据模型比较简单;
2、需要灵活性更强的IT系统;
3、对数据库性能要求较高;
4、不需要高度的数据一致性;
5、对于给定key,比较容易映射复杂值的环境。

3、常见NoSQL数据库

1)Redis

Redis是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库系统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过10万次读写操作。
Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存List链表和Set集合的数据结构,而且还支持对List进行各种操作,例如从List两端push和pop数据,取List区间,排序等等,对Set支持各种集合的并集交集操作,此外单个value的最大限制是1GB,不像memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性能消息队列服务,用他的Set可以做高性能的tag系统等等。另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一个功能加强版的memcached来用。
Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,并且它没有原生的可扩展机制,不具有scale(可扩展)能力,要依赖客户端来实现分布式读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。目前使用Redis的网站有github,EngineYard。

2)MongoDB

MongoDB是一个开源的面向文档的NoSQL数据库系统,目前由10gen开发并维护,介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
Mongo主要解决的是海量数据的访问效率问题,根据官方的文档,当数据量达到50GB以上的时候,Mongo的数据库访问速度是MySQL的10倍以上。Mongo的并发读写效率不是特别出色,根据官方提供的性能测试表明,大约每秒可以处理0.5万-1.5次读写请求。
因为Mongo主要是支持海量数据存储的,所以Mongo还自带了一个出色的分布式文件系统GridFS,可以支持海量的数据存储。

3)HBASE

HBase–HadoopDatabase,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PCServer上搭建起大规模结构化存储集群。
与FUJITSUCliq等商用大数据产品不同,HBase是GoogleBigtable的开源实现,类似GoogleBigtable利用GFS作为其文件存储系统,HBase利用HadoopHDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用HadoopMapReduce来处理HBase中的海量数据;GoogleBigtable利用Chubby作为协同服务,HBase利用Zookeeper作为对应。

下一篇

电话通信配套设施及材料设备(二)

弱电工程

电话通信配套设施及材料设备(二)

四、电话线 常用电话电缆及电话线型号及技术数据见表4-3~表4-5 表4-3 铜芯绝缘对绞电话电缆型号及技术数据 型号 名 称 作 用 线芯对数 线芯直径/mm 0.4 0.5 0.6 0.7 0.9 HQ 裸铝包电话电缆 敷 ...

相关内容

白名单

白名单

什么是白名单白名单是一种网络安全策略,它批准电子邮件地址、IP 地址、域名或应用......

通信百科

2020-12-21

什么是洗钱?(洗钱的常见方式有哪些)

什么是洗钱?(洗钱的常见方式有哪些)

什么是洗钱洗钱是犯罪分子用来隐藏其收入非法来源的过程。通过复杂的转账和交易或通过......

通信系统集成

2020-12-21

什么是高低压配电系统?

什么是高低压配电系统?

高压输配电系统概述电力系统是由发电厂、电力线路、变电站、电力用户组成的供电系统。......

弱电工程

2022-12-21